Home
Class 12
MATHS
If m and M are the minimum and the maxim...

If m and M are the minimum and the maximum values of `4+(1)/(2)sin^(2)2x-2cos^(4)x,x in RR` then M-m is equal to

A

`(15)/(4)`

B

`(9)/(4)`

C

`(7)/(4)`

D

`(1)/(4)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of (4 sin ^(2)x + 3 cos ^(2) x) is-

If m and M be the minimum and maximum value of 10 cos^2x-6sinxcosx+2sin^2x respectively then M+m is equal to

Find the minimum value of 4sin^(2)x+4cos^(2)x .

The maximum value of 4sin^2x+3cos^2x+sin(x/2)+cos(x/2) is

If M and m are the maximum and minimum values respectively of the function f(x)= x+ (1)/(x) , then the value of M - m is-

Prove that the maximum value of ((2x-1)(x-8))/((x-1)(x-4)) is less then its minimum value.

Find the maximum and minimum of 3sin 2x+4 cos 2x+3

Consider a circle x^2+y^2+a x+b y+c=0 lying completely in the first quadrant. If m_1a n dm_2 are the maximum and minimum values of y/x for all ordered pairs (x ,y) on the circumference of the circle, then the value of (m_1+m_2) is (a) (a^2-4c)/(b^2-4c) (b) (2a b)/(b^2-4c) (c) (2a b)/(4c-b^2) (d) (2a b)/(b^2-4a c)

If y=a cos m x-b sin m x , then the value of (d^(2)y)/(dx^(2)) is -

The maximum and minimum values of [4 cos x^(2)cos ((pi)/(3)+ x^(2))cos ((pi)/(3)-x^(2))] respectively are-