Home
Class 12
MATHS
Let p=underset(x to 0^(+))lim(1+tan^(2)s...

Let `p=underset(x to 0^(+))lim(1+tan^(2)sqrt(x))^((1)/(2x))` then log p is equal to

A

2

B

1

C

`(1)/(2)`

D

`(1)/(4)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p=lim_(xto0^(+))(1+tan^(2)sqrt(x))^((1)/(2x)) . Then log_(e)p is equal to

underset(x to oo) lim (sqrt(x^2+2x+1)-x)

underset(x to1)lim((1+x)/(2+x))^((1-sqrt(x))/(1-x))

underset (xto0) lim(sqrt(1-x^2)-sqrt(1+x^2))/x^2

Show that, underset(x to 0) lim [tan(x+(pi)/(4))]^((1)/(x))=e^(2)

If underset(xrarr2)"lim"(x-2)/(sqrt(x)-sqrt(2))=Ksqrt(2) then K is equal to -

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

underset(xto oo)lim(sqrt(1+x^4)-(1+x^2))/x^2

underset(xrarr1)"lim"(x-1)/(sqrt(x)-1)= ?

Let f(x) be a polynomial of degree four having extreme values at x = 1 and x = 2. If underset(x to 0)lim[1+(f(x))/(x^(2))]=3 , then f(2) is equal to-