Home
Class 12
MATHS
Let, f:[0,4pi]to[0,pi] be defined by f(x...

Let, `f:[0,4pi]to[0,pi]` be defined by `f(x)=cos^(-1)(cosx)`. The number of points `x in[0,4pi]` satisfying the equation
`f(x)=(10-x)/(10)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[0,4pi]->[0,pi] be defined by f(x)=cos^-1(cos x). The number of points x in[0,4pi] 4satisfying the equation f(x)=(10-x)/10 is

Let a function f:(0,infty)to[0,infty) be defined by f(x)=abs(1-1/x) . Then f is

The number of values of x in [0 , 4pi] satisfying abs(sqrt3 cos x - sin x) ge 2 , is

Let f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+1/2tan^(-1)|x| . Then the number of values of x in the interval [-10pi,8pi] satisfying the equation f(x)=sgn(g(x)) is __________

Let f:[-pi/3, 2pi/3] rarr [0,4] be a function defined as f(x)=sqrt3 sinx-cosx+2 . Then f^-1(x) is given by

Let f(x)=max{sinx,cosx}AA"x"inR then number of critical points of f(x) in (0,2pi) is

Find the values of x, (-pi lt x lt pi, x ne 0) satisfying the equation , 8^(1+|cos x|+|cos^(2)x|+…oo) = 4^(3)

Let f(x)=e^(cos^-1sin(x+pi/3)) , then

Find the values of x in (-pi,pi) which satisfy the equation 8^(1+|cosx|+|cos^2x|+|cos^3x|+...))=4^3

If f(x)=cos[pi^2]x+cos[-pi^2]x then the value of f(pi/4)+f(pi/2) is