Home
Class 12
MATHS
Let, f:(0,oo)toR be given by f(x)=int(...

Let, `f:(0,oo)toR` be given by
`f(x)=int_((1)/(x))^(x)e^(-(t+(1)/(t)))(dt)/(t)`
Then

A

f(x) is monotonically increasing on `[1,oo)`

B

f(x) is monotonically decreasing on (0, 1)

C

`fx+f((1)/(x))=0," for all "x in(0,oo)`

D

`f(2^(x))` is an odd function of x on R

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : (0,infty) rarr R be given by f(x) = int_(1/x)^(x) e^-(t + 1/t) dt/t then

Let f:(0,oo)rarrRR be given by f(x)=oversetxunderset(1/x)inte^((t+1/t))dt/t Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let F(x)=int_(0)^(x)(cost)/((1+t^(2)))dt,0lex le2pi . Then -

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

L e tf:[1,oo)->Ra n df(x)=int_1^x(e^t)/t dt-e^(x)dot Then

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x^(1/3))e^(-t^(3)).f(x-t^(3))dt . Then find f'(x) .

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f:RtoR be a continuous function which satisfies f(x)=int_(0)^(x)f(t)dt . Then the value of f(log_(e)5) is