Home
Class 12
MATHS
The following integral underset((pi)/(4)...

The following integral `underset((pi)/(4))overset((pi)/(2))(int)(2" cosec "x)^(17)dx` is equal to

A

`int_(0)^(log(1+sqrt(2)))2(e^(u)+e^(-u))^(16)"du"`

B

`int_(0)^(log(1+sqrt(2)))(e^(u)-e^(-u))^(17)du`

C

`int_(0)^(log(1+sqrt(2)))(e^(u)-e^(-u))^(17)du`

D

`int_(0)^(log(1+sqrt(2)))2(e^(u)-e^(-u))^(17)du`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int"cosec"^(4)x dx is equal to -

int cosec x dx is equal to-

int_((pi)/4)^((pi)/2)(2cosecx)^17 dx

The value of the integral int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx is equal to-

Evaluate the following integral overset(3)underset(1)int (x^2+x)dx .

The value of int_(-(pi)/(4))^((pi)/(4)) x^(3) sin^(4) x dx is equal to -

The following integral int_(pi/4)^(pi/2) (2 cosec x)^17 dx is equal to

The value of int_(pi)^(2pi)[ 2 cos x]dx is equal to -

The value of the integral int_((pi)/(6))^((pi)/(3))((sinx-xcosx))/(x(x+sinx))dx is equal to-

Find the following integrals int(sec^(2)x)/(cosec^(2)x)dx