Home
Class 12
MATHS
The options(s) with the values of a and ...

The options(s) with the values of a and L that satisfy the following equation is(are)
`(int_(0)^(4pi)e^(t)(sin^(6)at+cos^(4)at)dt)/(int_(0)^(pi)e^(t)(sin^(6)at+cos^(4)at)dt)=L?`

A

`a=2,L=(e^(4pi)-1)/(e^(pi)-1)`

B

`a=2,L=(e^(4pi)+1)/(e^(pi)+1)`

C

`a=4,L=(e^(4pi)-1)/(e^(pi)-1)`

D

`a=4,L=(e^(4pi)+1)/(e^(pi)+1)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The option(s) with the values of a and L that satisfy the following equation is (are) (int_0^(4pi)e^t(sin^6at+cos^4at)dt)/(int_0^pi e^t(sin^6at+cos^4at)dt)=L

int_(0)^((3pi)/(4))sin^(2)xcos^(2)xdx

Evaluate: int_(0)^((pi)/(2))sin^(4)xcos^(3)xdx

int_(0)^((pi)/(2))(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

Evaluate int_(0)^(pi/2)(cos^(4)x)/(sin^(4)x+cos^(4)x)dx

Evaluate: int_(0)^((pi)/(4))(sin^(2)xcos^(2)xdx)/((sin^(3)x+cos^(3)x)^(2))

Let f(x)=sin^(4)x-cos^(4)x int_(0)^((pi)/(2))f(x)dx =

int_(0)^(pi)(sin4theta)/(sintheta)d theta=0

int_(0)^(2pi)sin^(4).(x)/(2)cos^(5).(x)/(2)dx=0

The value of int_(0)^(pi) e^(sin^(2)x) cos^(3)x dx is equal to -