Home
Class 12
MATHS
Let f(x)=7tan^(8)x+7tan^(6)x-3tan^(4)x-3...

Let `f(x)=7tan^(8)x+7tan^(6)x-3tan^(4)x-3tan^(2)x` for all `x in(-(pi)/(2),(pi)/(2))`. Then the correct expression(s) is (are)-

A

`int_(0)^((pi)/(4))xf(x)dx=(1)/(12)`

B

`int_(0)^((pi)/(4))f(x)dx=0`

C

`int_(0)^((pi)/(4))xf(x)dx=(1)/(6)`

D

`int_(0)^((pi)/(4))f(x)dx=1`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2, pi/2) . The correct expression(s) is (are)

tan ^(-1) ""(x-1)/(x-2) + tan ^(-1) ""(x+1)/(x+2)=(pi)/(4)

Solve 3tan2x-4tan3x=tan^2 3xtan2xdot

Solve tan 2x =- cot (x + (pi)/(3))

tan ^(-1) ""(1)/(x)+tan ^(-1) ""2=(pi)/(2)

tanx + tan2x + tan3x=0

tan 4x = (4 tan x (1- tan ^(2) x ))/( 1 - 6 tan ^(2) x + tan ^(4) x)

tanx + tan2x + tan3x = tanx tan2x tan3x

2 tan ^(-1) ""(2x)/(1-x^(2))=(pi)/(3)

tan ^(-1) (cot x) + cot ^(-1) (tan x) =(pi)/(4)