Home
Class 12
MATHS
Let f'(x)=(192x^(3))/(2+sin^(4)pix) for ...

Let `f'(x)=(192x^(3))/(2+sin^(4)pix)` for all `x in R` with `f((1)/(2))=0`. If `m le int_((1)/(2))^(1)f(x)dx leM`, then the possible values of m and M are-

A

m = 13, M = 24

B

`m=(1)/(4),M=(1)/(2)`

C

`m=-11,M=0`

D

m = 1, M = 12

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f'(x)=(192x^3)/(2+sin^4pix) for all x in R with f(1/2)=0.If mleint_(1//2)^1f(x)dxleM , then the possible values of m and M are

Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. If mlt=int_(1/2)^1f(x)dxlt=M then for x in [(1/2),1] the possible values of m and M are

Let f (x+(1)/(x))= x^(2) +(1)/(x^(2)) , x ne 0, then the value of f (x) is-

If the function f(x)=4x^(3)+ax^(2)+bx-1 satisfies all the conditions of Rolle's theorem in -(1)/(4) le x le 1 and if f'((1)/(2))=0 , then the values of a and b are -

If f(x)=|x-1| , then the value of int_(0)^(2)f(x) dx is -

Let f(x)=sin^(4)x-cos^(4)x int_(0)^((pi)/(2))f(x)dx =

If int_(-1)^(4)f(x)dx=4 and int_(2)^(4){3-f(x)}dx=7 then the value of int_(-1)^(2)f(x)dx is

Let F:RR to RR be a thrice differentiable function. Suppose that F(1)=0,F(3)=-4 and F'(x)lt0 for all x in(1,3) . Let f(x)=xF(x) for all x in RR . If int_(1)^(3)x^(2)F'(x)dx=-12 and int_(1)^(3)x^(3)F''(x)dx=40 , then the correct expression(s) is(are)-

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then find the value of f(log_(e)2) is

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -