Home
Class 12
MATHS
int dx/(1-cos alpha cos x )(0 lt int dx/...

`int dx/(1-cos alpha cos x )(0 lt int dx/(1-cos alpha cos x )(0 le alpha le pi/2) alpha le pi/2)`

Text Solution

Verified by Experts

The correct Answer is:
`2 "cosec"alpha tan^(-1)("cot" alpha/2 "tan"x/2)+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Integer Answer Type|5 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Short Answer type question|58 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int (dx)/(1-cos alpha cos x)(0< alpha < pi/2)

int_(0)^(pi)( x dx)/(1+cos alpha sin x)[0 lt alpha lt pi]

int dx/(cos x + cos alpha)

int (cos x)/(cos (x+alpha))dx

Evaluate int_(0)^(pi)(x dx)/(1+cos alpha sin x) ,where 0lt alpha lt pi .

Prove that cos (sinx) > sin (cos x) for all x in 0 le x le pi//2

1/(cos alpha + cos 3 alpha)+ 1/(cos alpha + cos 5 alpha)+ 1/(cos alpha + cos 7 alpha) +....+ 1/(cos alpha +cos(2n+1) alpha) = 1/2 "cosec" alpha[tan (n+1) alpha - tan alpha ]

Prove : int ( cos 2x - cos 2 alpha )/(cos x - cos alpha ) dx = 2(x cos alpha + sin x) +c

Find the sum to n terms of the following series: cos alpha + cos (pi - alpha) + cos (2pi + alpha) + .......(0 < alpha < (pi)/2) .

The sides of a triangle are sin alpha, cos alpha and sqrt(1+ sin alpha cos alpha) where 0 lt alpha lt (pi)/(2). Then the greatest angle of the triangle is-