Home
Class 12
MATHS
int (e^(x)dx)/(e^(2x)+e^(x)-2)...

`int (e^(x)dx)/(e^(2x)+e^(x)-2)`

Text Solution

Verified by Experts

The correct Answer is:
`1/3 log|(e^(x)-1)/(e^(x)+2)|+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Integer Answer Type|5 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Short Answer type question|58 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int (e^(x)dx)/(5-4e^(x)-e^(2x))

int(e^xdx)/(e^(2x)+1) =

int e^(2-3x)dx

int (e^(x)dx)/(sqrt(e^(2x)-a^(2)))

Integrate : int (e^(x) dx)/(1-3e^(x)-3e^(2x))

int (e^(x)dx)/(sqrt(e^(2x)-5e^(x)+6))

int (e^(x))/(1+e^(x))dx

The value of int (e^(x)dx)/((e^(x)+2)(e^(x)+1)) is equal to -

If int (e^(x))/(e^(2x)+6e^(x)+5)dx=(1)/(lamda)log |(e^(x)+1)/(e^(x)+5)|+c , then the value of lamda is-

int_(0)^(1)(dx)/(e^(x)+e^(-x))