Home
Class 12
MATHS
int dx/(e^(x)(e^(x)+1)^(2)...

`int dx/(e^(x)(e^(x)+1)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`(-2e^(x)+1)/(e^(x)(e^(x)+1))+2 log (1+e^(-x))+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Multiple Correct Answers Type|5 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Integer Answer Type|5 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Short Answer type question|58 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • INTEGRATION BY PARTS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

int (dx)/((e^(x)-1)^(2))

int (e^(x))/(1+e^(x))dx

int(e^(2x))/(e^(x)+1)dx

int(dx)/(e^(x)-1)

int(dx)/(1+e^(x))

int (e^(x)dx)/(e^(2x)+e^(x)-2)

Evaluate int(e^(2x)-2e^(x))/(e^(2x)+1)dx

int e^(x)((1)/(x)-(1)/(x^(2)))dx

int (e^(2x))/(e^(2x)+4)dx

If int (e^(x))/(e^(2x)+6e^(x)+5)dx=(1)/(lamda)log |(e^(x)+1)/(e^(x)+5)|+c , then the value of lamda is-