Home
Class 12
MATHS
Show that , the equation of all circles ...

Show that , the equation of all circles touching the y-axis at the origin is ,
` 2xy (dy)/(dx) = y^(2) - x^(2)`

Promotional Banner

Topper's Solved these Questions

  • ORDER AND DEGREE OF DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (A Multiple Correct Answers Type )|5 Videos
  • ORDER AND DEGREE OF DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination ( B Integer Answer Type )|5 Videos
  • ORDER AND DEGREE OF DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise EXERCISE (Very Short Answer Type Questions )|9 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBJEE 2026|23 Videos
  • PARABOLA

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams ( E Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

Show that , the equation of all circles touchung the y -axis at the origin is 2xy dy/dx= y^2-x^2 .

Find the differential equation of all circles touching the x-axis at the origin .

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

Find the differential equation of all circles which touch the x-axis at the origin.

The differential equation of the system of circles touching the y-axis at the origin, is -

Form the differential equation of the family of circles touching the y-axis at origin.

(x^(2)+xy)(dy)/(dx)=x^(2)+y^(2)

Form the differential equation of all circle touching the x-axis at the origin and centre on the y-axis.

Solve xy(dy)/(dx)=x^2+2y^2

The equation of a circle of radius 1 touching the circle x^2 + y^2 - 2|x| = 0 is

CHHAYA PUBLICATION-ORDER AND DEGREE OF DIFFERENTIAL EQUATION -EXERCISE ( Short Answer Type Questions )
  1. x = e^(-t) (a cos t + b sin t )

    Text Solution

    |

  2. (y -b)^(2) = 4k (x - a)

    Text Solution

    |

  3. Eliminate a and b, y = a sec x + b tan x

    Text Solution

    |

  4. xy =Ae^(x) + Be^(-x)

    Text Solution

    |

  5. Show that the differential equation x (yy(2) + y(1)^(2)) = yy(1) is ...

    Text Solution

    |

  6. Show that , the solution x = A cos (nt + B) + (k)/(n^(2) - p^(2)) . S...

    Text Solution

    |

  7. Show that , the solution x = e^(-kt) (a cos nt + b sin nt ), for all...

    Text Solution

    |

  8. Show that the solution y = a sin x + b cos x + x sin x satisfies , ...

    Text Solution

    |

  9. Show that , the equation of all circles touching the y-axis at the ori...

    Text Solution

    |

  10. Find a differential equation which is satisfied by all curves y =...

    Text Solution

    |

  11. Form the differential equation of the family of hyperbolas b^(2) x...

    Text Solution

    |

  12. Determine the differential equation of the family of parabolas whose a...

    Text Solution

    |

  13. From the differential equation of family of parabolas having vertex at...

    Text Solution

    |

  14. From the differential equation of the family of circles (x -a)^(2)...

    Text Solution

    |

  15. Show that the function y= A cos 2x - B sin 2x is a solution of the...

    Text Solution

    |

  16. Form the differential equation of the family of circles having centre ...

    Text Solution

    |

  17. From the differential representing the family of ellipses having centr...

    Text Solution

    |

  18. From the differential equation of the family of circles in the second ...

    Text Solution

    |

  19. From the differential equation that represents all parabolas each of w...

    Text Solution

    |

  20. If a is a prameter , show that the differential equation of the fam...

    Text Solution

    |