Home
Class 12
MATHS
The slope of the tangent to the hyperbol...

The slope of the tangent to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` at the point (`x_(1),y_(1))` is-

A

`(b^(2)x_(1))/(a^(2)y_(1))`

B

`(b^(2)y_(1))/(a^(2)x_(1))`

C

`-(b^(2)x_(1))/(a^(2)y_(1))`

D

`(b^(2)y_(1))/(a^(2)x_(1))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • TANGENT AND NORMAL

    CHHAYA PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTIONS|35 Videos
  • TANGENT AND NORMAL

    CHHAYA PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS|42 Videos
  • TANGENT AND NORMAL

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • STRAIGHT LINE IN THREE DIMENSINAL SPACE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination|19 Videos
  • TRANSFORMATIONS OF SUMS AND PRODUCTS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the equations of the tangent and normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point (x0, y0).

Find the equation of the tangent to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at ( a sec, theta b tan theta) . Hence show that if the tangent intercepts unit length on each of the coordinate axis than the point (a,b) satisfies the equation x^(2)-y^(2)=1

The slope of the tangent to the curve (y-x^(5))^(2)=x(1+x^(2))^(2) at the point (1, 3) is

If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 cuts the circle x^(2)+y^(2)=a^(2) at points Q(x_(1),y_(1)) and R(x_(2),y_(2)) , then the vlaue of (1)/(y_(1))+(1)/(y_(2)) is

If e_1 is the eccentricity of the hyperbola (y^(2))/(b^(2)) - (x^(2))/(a^(2)) = 1 then e_(1) =

The locus of a point P ( alpha , beta ) moving under the condition that the line y= alpha x + beta is a tangent to the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2))=1 is a/an-

Find the equation of the tangent at the specified points to each of the following curves. the hyperbola (X^(2))/(a^(2))-(Y^(2))/(b^(2))=1 "at" (x,y)

Show that the locus of the midpoints of the chords of the circle x^(2)+y^(2)=a^(2) which are tangent to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 is (x^(2)+y^(2))^(2)=a^(2)x^(2)-b^(2)y^(2) .

Find the area of the triangle formed by any tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 with its asymptotes.

CHHAYA PUBLICATION-TANGENT AND NORMAL -MULTIPLE CHOICE TYPE QUESTIONS
  1. If m is the slop of the normal to the continous curve y=f(x) at the p...

    Text Solution

    |

  2. If the tangent to the contentious curve y=f(x) "at" p(a,b) is paralle...

    Text Solution

    |

  3. If the tangent t the curv y=f(x )"at" P(x(1),y(1)) is paralle to the y...

    Text Solution

    |

  4. If the slopes of the tangents and normal to the curve y=f(x) at the po...

    Text Solution

    |

  5. The eqaution of the normal to the continuous curve y=f(x) at the point...

    Text Solution

    |

  6. If the noraml to the continous curve y=f(x)"at" P(x(1),y(1)) makes ang...

    Text Solution

    |

  7. The slope of the normal to the parabola x^(2)= 4ay at (2at, at^(2...

    Text Solution

    |

  8. The slope of the normal to the rectangular hyperbola xy=4 "at" (2t, (2...

    Text Solution

    |

  9. The slope of the tangent to the parabola y^(2)=4ax at the point (at^(2...

    Text Solution

    |

  10. The slope of the normal to the cirlce x^(2)+y^(2)=a^(2) at the point (...

    Text Solution

    |

  11. The slope of the tangent to the rectangular hyperbola xy=c^(2) at the ...

    Text Solution

    |

  12. The slope of the normal to the circle x^(2)+y^(2)=a^(2) at the point (...

    Text Solution

    |

  13. The slop of the tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))...

    Text Solution

    |

  14. The slop of the normal to the reactangular hyperbola xy=c^(2) point (...

    Text Solution

    |

  15. The slope of the tangent to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |

  16. The slop of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)...

    Text Solution

    |