Home
Class 12
MATHS
A function f(x) is defined in a lt x lt ...

A function `f(x)` is defined in `a lt x lt b` and `a lt x_(1) lt x_(2) lt b`, then `f(x)` is strictly monotonic decreasing in `a le x le b` when-

A

`f(x_(2)) gt f(x_(1))` when `x_(2) gt x_(1)`

B

`f(x_(2)) lt f(x_(1))` when `x_(2) gt x_(1)`

C

`f(x_(2)) gt f(x_(1))` when `x_(2) lt x_(1)`

D

`f(x_(2)) lt f(x_(1))` when `x_(2) lt x_(1)`

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that phi(x)=cos x is a strictly monotonic decreasing function in 0 le x le pi .

If f'(x) exists and if f'(x) lt 0 everywhere in the interval a le x le b , then show that f(x) is a decreasing function in a le x lt b .

If f(x)= int e^(x)(x-1)(x-2)dx , then show that f(x) is a decreasing function 1 lt x lt 2 .

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

If 0 lt x lt pi/2 , show that, sin x lt x lt tan x

If f (x) ={{:(x",", "when " 0 lt x lt 1),(2-x",", "when" 1 lt x le 2):} then f'(1) is equal to-

Given, A={x:0 lt x le2} and B={x:1 lt x lt3}, find A cupB

Given, A={x:0 lt x le2} and B={x:1 lt x lt3}, find A capB

Given, A={x:0 lt x le2} and B={x:1 lt x lt3}, find A-B

If A = {x: -1 le x le 2} and B= {x:0 lt x le 4} then A nnB is equal to-