Home
Class 12
MATHS
The function f(x)=tan^(-1) (sin x+ cos x...

The function `f(x)=tan^(-1) (sin x+ cos x)` is an increasing function in `(-pi/2, pi/k)`, then find k.

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise MCQ|5 Videos
  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Comprehension Type )|6 Videos
  • INTEGRALS OF SOME SPECIAL FORM OF FUNCTIONS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

The function f(x) =tan^(-1)(sinx+cosx) is an increasing function in

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)= tan^(-1) (sin x + cos x ), x gt 0 is always an increasing function on the interval-

Show that f(x)=tan^(-1)(cos x+sin x) is a stictly increasing function in the interval (0, pi/4) .

The function f(x)=sin^4x+cos^4x increasing if :

If the function f(x)=(a sin x+2 cos x)/(sin x + cos x) is strictly increasing for all values of x, then a gt k , find k.

Show that the function f(x) =sin^(4)x+cos^(4)x is increasing in (pi)/(4) lt x lt (3pi)/(8) .

The function f(x) =(1-sin x+cos x)/(1+sin x+cos x) is defined at x=pi. if f(pi)= k+1, then the value of k for which, lim _(x to pi) f(x) =f(pi) is-

If 0 lt pi lt pi/2 then, (i) sin x is an increasing function, (ii) cos x is an increasing function (iii) tan x is an increasing function, then -

Show that, the function f(x)=cos 2x is increasing at x=(3pi)/4 .