Home
Class 12
MATHS
Prove that the function (sin(x+alpha))/(...

Prove that the function `(sin(x+alpha))/(sin(x+beta))` has no critical point.

Text Solution

Verified by Experts

The correct Answer is:
`sin(beta-alpha)=0`
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    CHHAYA PUBLICATION|Exercise EXERCISE MCQ|12 Videos
  • MAXIMA AND MINIMA

    CHHAYA PUBLICATION|Exercise EXERCISE Very Short Answer Type Questions|20 Videos
  • MATHEMATICAL REASONING

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016 )|1 Videos
  • MCQ ZONE

    CHHAYA PUBLICATION|Exercise Question Paper 7|80 Videos

Similar Questions

Explore conceptually related problems

Prove that the function (sin(x + alpha))/(sin(x + beta)) has neither a maximum nor a minimum value.

Integrate the functions 1/sin(x+alpha))

int (sin (x-alpha))/(sin (x+alpha))dx

Prove that (cos2 alpha-cos 2 beta)/(sin2 alpha+sin2 beta)=tan(beta-alpha)

Prove that (cos alpha - cos beta)^(2) +(sin alpha - sin beta)^(2) = 4 "sin"^(2) (alpha-beta)/2

If tan theta = ( tan alpha - tan beta)/(1-tan alpha tan beta),"show that", sin 2 theta=(sin 2 alpha- sin 2 beta)/(1- sin2 alpha sin 2 beta).

Find the value of (sin (alpha + beta))/(sin (alpha - beta)), "given that" tan alpha = 2 tan beta.

If tan theta = (x sin alpha + y sin beta)/(x cos alpha + y cos beta), "prove that " x sin (theta - alpha) + y sin (theta - beta) = 0

Show that the value of sin^(2) (x + a) + sin^(2) (x + beta) - 2 cos (alpha - beta ) sin (x + alpha) sin (x + beta) is independent of x.

From a point a metres above a lake the angle of elevation of a cloud is alpha and the angle of depression of its reflection is beta . Prove tha the height of the cloud is (a sin(alpha + beta))/(sin(beta-alpha)) metres.