Home
Class 12
MATHS
Let f(x)sqrt((1-x^(2))(1+2x^(2))) define...

Let `f(x)sqrt((1-x^(2))(1+2x^(2)))` defined on [-1,1] then -

A

the greatest value of f(x) is 1

B

the greatest value of f(x) is `(3)/(sqrt(8)`

C

the least value of f(x) is 0

D

the least value of f(x) is -1

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination B|5 Videos
  • MAXIMA AND MINIMA

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination C|1 Videos
  • MAXIMA AND MINIMA

    CHHAYA PUBLICATION|Exercise EXERCISE Long Answer Type Questions|38 Videos
  • MATHEMATICAL REASONING

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016 )|1 Videos
  • MCQ ZONE

    CHHAYA PUBLICATION|Exercise Question Paper 7|80 Videos

Similar Questions

Explore conceptually related problems

Let f (x+(1)/(x))= x^(2) +(1)/(x^(2)) , x ne 0, then the value of f (x) is-

Let f(x)=(1-x)^(2) sin^(2) x+x^(2) for all x in RR , and let g(x)=int_(1)^(x) ((2(t-1))/(t+1)-log t)f(t) dt for all x in (1, oo) . Consider the statements : P : there exists some x in RR such that f(x)+2x=2(1+x^(2)) Q : There exists some x in RR such that 2f(x)+1=2x(1+x) then-

Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value of f(1) will be

If f(x)=sqrt(x^(2)+1) , then the value of f'(-1) is -

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

Let f(x)=(sqrt(x-2 sqrt(x-1)))/(sqrt(x-1)-1) , then -

Let f(x) be defined on [-2,2] and is given by f(x)={(-1, -2lexlt0),(x-1, 0lexle2):} and g(x)=f(|x|)+|f(x)|, then find g(x).

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

Let the function f(x)=x^2+x+sin x-cosx+log(1+|x|) be defined on the interval [-1,1] .Define functions g(x) and h(x) in[-1,0] satisfying g(-x)=-f(x) and h(-x)=f(x)AAx in [0,1]dot