Home
Class 12
MATHS
Let f(x) ={{:(x^(3)+x^(2)-10x",",1lexlt0...

Let f(x) `={{:(x^(3)+x^(2)-10x",",1lexlt0),(1+cosx,(pi)/(2)lexlepi),(1+cosx","(pi)/(2)lexlepi,):}` then f(x) has,

A

local maxima at `x=(pi)/(2)`

B

local minima at `x=(pi)/(2)`

C

absolute maxima at x =0

D

absolute maxima at `x=(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination B|5 Videos
  • MAXIMA AND MINIMA

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination C|1 Videos
  • MAXIMA AND MINIMA

    CHHAYA PUBLICATION|Exercise EXERCISE Long Answer Type Questions|38 Videos
  • MATHEMATICAL REASONING

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016 )|1 Videos
  • MCQ ZONE

    CHHAYA PUBLICATION|Exercise Question Paper 7|80 Videos

Similar Questions

Explore conceptually related problems

Find the values of a and b such that the function f (x) defined by f(x)={{:(x+asqrt(2)sinx,0lexlt(pi)/(4)),(2xcotx+b,(pi)/(4)lexle(pi)/(2)),(acos2x-bsinx,(pi)/(2)ltxlepi):} is continuous for all values of x in 0lexlepi .

If f(x)={(x[x], 0lexlt2),((x-1)[x],2lexle3):} , then f(x) is

Let f(x)={{:(-2sinx" if "xle-(pi)/(2)),(Asinx+B" if "-(pi)/2ltxlt(pi)/(2)),(cosx" if " xge(pi)/(2)):} . Then

Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"cosec"x",",pi//2 lt x lt pi):} Then its odd extension is

Let f(x)={{:(" "x^(2)/(2),"when " 0lexlt1),(2x^(2)-3x+(3)/(2),"when " 1 lexle2):} Discuss the continuity of (x) in the interval 0lexle2 .

If f(x)={(4, -3ltxlt-1),(5+x, -1lexlt0),(5-x, 0 lexlt2),(x^2+x-3, 2lexlt3):} then f(IxI) is

Let f(x)={{:((1-sin^(3)x)/(3cos^(2)x),"if "x lt(pi)/(2)),(a,"if "x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2)),"if "x gt(pi)/(2)):}" ," if f (x) is continuous at x=(pi)/(2) , find a and b .

Let f(x) ={{:((1-sin x)/(pi-2x)",","when" x ne (pi)/(2)),(lamda ",","when" x-(pi)/(2)):} If lim _(x to (pi)/(2))f(x)=f ((pi)/(2)), then the value of lamda is-

" Let f(x) " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f' (pi//2) .

Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim_(xto1) "f(x) exists, then a is "