Home
Class 12
MATHS
Find the area of the triangle whose posi...

Find the area of the triangle whose positive vectors of the vertices are `6hat(i), 3hat(j) and -2hat(i)`

Text Solution

Verified by Experts

The correct Answer is:
12 sq. units
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise WBJEE Archive|13 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016)|1 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If the area of the triangle the positive vectors of whose vertices are ahat(j), 4hat(j) and hat(i) + hat(j) is 6 square units, find a.

Find the median vec(AD) of the triangle ABC where positive vectors of the vertices A, B and C are respectively hat(i) + hat(j), 4hat(i) + 6hat(j), hat(i) - hat(j)

Find the area of triangle whose vertices have position vectors hat (i) + hat (j) + 2 hat (k) , 2 hat (i) + 2 hat (j) + 3 hat (k) and 3 hat (i) - hat (j) - hat (k)

Find the area of the parallelogram whose Whose diagonals are the vectors 3 hat (i) + hat (j) - 2 hat (k) and hat (i) - 3 hat (j) + 4 hat (k)

Let ABC be a triangle, the position vectors of whose vertices are 7hat(j)+10hat(k), -hat(i)+6hat(j)+6hat(k) " and " -4hat(i)+9hat(j)+6hat(k) . Then DeltaABC is -

Let A B C be triangle, the position vectors of whose vertices are respectively hat i+2 hat j+4 hat k , -2 hat i+2 hat j+ hat k and 2 hat i+4 hat j-3 hat k . Then "Delta"A B C is a. isosceles b. equilateral c. right angled d. none of these

Let A B C be a triangle, the position vectors of whose vertices are -10 hat i+10 hat k ,- hat i+6 hat j+6 hat k and -4 hat i+9 hat j+6 hat k . Then Delta A B C is a. isosceles b. equilateral c. right angled d. none of these

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)

Find the area of the parallelogram whose adjacent sides are vec (a) = 3 hat (i) - hat(j) + 4 hat (k) and vec(b) = hat (i) - hat (j) + hat (k)

(i) If the position vectors of the points A, B, C be 5hat(i)+3hat(j)+4hat(k), hat(i)+5hat(j)+hat(k) " and " -3hat(i)+7hat(j)-2hat(k) respectively, then show that the points B bisects the line-segment bar(AC) . (ii) The position vectors of the points P and Q are 5hat(i)-12hat(j)+5hat(k) " and " -4hat(i)+3hat(j)-hat(k) respectively. Find the position vectors of the trisection points of the line-segment bar(PQ) .