Home
Class 12
MATHS
Find the median vec(AD) of the triangle ...

Find the median `vec(AD)` of the triangle ABC where positive vectors of the vertices A, B and C are respectively `hat(i) + hat(j), 4hat(i) + 6hat(j), hat(i) - hat(j)`

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(2) hat(i) + (3)/(2) hat(j)`
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise WBJEE Archive|13 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016)|1 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Find the area of the triangle whose positive vectors of the vertices are 6hat(i), 3hat(j) and -2hat(i)

If the area of the triangle the positive vectors of whose vertices are ahat(j), 4hat(j) and hat(i) + hat(j) is 6 square units, find a.

Find the area of triangle whose vertices have position vectors hat (i) + hat (j) + 2 hat (k) , 2 hat (i) + 2 hat (j) + 3 hat (k) and 3 hat (i) - hat (j) - hat (k)

Let ABC be a triangle, the position vectors of whose vertices are 7hat(j)+10hat(k), -hat(i)+6hat(j)+6hat(k) " and " -4hat(i)+9hat(j)+6hat(k) . Then DeltaABC is -

(i) If the position vectors of the points A, B, C be 5hat(i)+3hat(j)+4hat(k), hat(i)+5hat(j)+hat(k) " and " -3hat(i)+7hat(j)-2hat(k) respectively, then show that the points B bisects the line-segment bar(AC) . (ii) The position vectors of the points P and Q are 5hat(i)-12hat(j)+5hat(k) " and " -4hat(i)+3hat(j)-hat(k) respectively. Find the position vectors of the trisection points of the line-segment bar(PQ) .

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)

Find the scalar product of the following pair of vectors and the angle between them : vec(a) = 2 hat (i) + 3 hat (j) - 4 hat (k) and vec(b) = hat (i) + 2 hat (j) + hat (k)

find the projection of 3hat i - hat j + 4hat k on 2 hat i + 3 hat j -6 hat k

If 4 hat i+7 hat j+8 hat k ,2 hat i+3 hat j+4hat ja n d2 hat i+5 hat j+7 hat k are the position vectors of the vertices A ,Ba n dC , respectively, of triangle A B C , then the position vecrtor of the point where the bisector of angle A meets B C is a. 2/3(-6 hat i-8 hat j- hat k) b. 2/3(6 hat i+8 hat j+6 hat k) c. 1/3(6 hat i+13 hat j+18 hat k) d. 1/3(5 hat j+12 hat k)

Find the scalar and vector projection of vec(b) on a vec (a) where vec(a) = hat (i) + 2 hat (j) + 2 hat (k) and vec (b) = hat (j) + 2 hat (k)