Home
Class 12
MATHS
The value of lamda for which the vectors...

The value of `lamda` for which the vectors `vec(a) = hat(i) + 3hat(j) - hat(k) and hat(b) = 2hat(i) + 6hat(j) + lamda hat(k)` are parallel is-

A

2

B

`-2`

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise WBJEE Archive|13 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016)|1 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If vectors vec (a) = p hat (i) + 8 hat (j) + 6 hat (k) and vec (b) = - 3 hat (i) + 4 hat (j) + q hat (k) are parallel , find p and q

The value of lambda for which the vectors veca= hati+ 3 hat j- hat k and vec b= 2hati+6 hat j+lambdak are parallel is

Find the value of lamda if three vectors vec(a) = 2hat(i) - hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c) = 3hat(i) + lamda hat(j) + 5hat(k) are coplanar

For what values of p and q the vectors 2 hat (i) + p hat (j) - 3 hat (k) and q hat (i) - 4 hat (j) + 2 hat (k) are parallel ?

If vec (a) = 2 hat (i) - 3 hat (j) + 4 hat (k) and vec(b) = - 6 hat (i) + 9 hat (j) - 12 hat (k) , then

If vectors vec(alpha)=2hat(i)+3hat(j)-6hat(k) " and " vec(beta)=phat(i)-hat(j)+2hat(k) are parallel, then the value of p is -

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)

The scalar projection of vec(a) = 2 hat (i) - 3hat(j) + hat (k) on vec (b) = 3 hat(i) - 6 hat (j) - 2 hat (k)

Determine the value of lamda for which the vectors 3i + lamda hat(j) and lamda hat(i) + 12 hat(j) are collinear

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)