Home
Class 12
MATHS
Find vec(c), when vec(a) xx vec(c) = vec...

Find `vec(c)`, when `vec(a) xx vec(c) = vec(b) and vec(a).vec(c) =3` where `vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(j) - hat(k)`

Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise WBJEE Archive|13 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016)|1 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

Find the projection of vector (vec(b)+vec (a )) on vector vec(a) where vec(a) = 2 hat (i) - hat (j) + 2 hat (k) and vec(b) = hat(j) + 2 hat (k)

Find the scalar and vector projection of vec(b) on a vec (a) where vec(a) = hat (i) + 2 hat (j) + 2 hat (k) and vec (b) = hat (j) + 2 hat (k)

Find the projection of vector (vec(b)+vec(c )) on vector vec(a) where vec(a) = hat (i) + 2 hat (j) + hat (k) , vec(b) = hat (i) + 3 hat (j) + hat (k) and vec c = hat (i) + hat (k)

Find the scalar and vector components of vec(a) in the direction of vec(b) where vec(a) = hat (i) + hat(j) and vec(b) = hat (j) + hat (k)

Find the scalar and vector components of vec(a) in the direction of vec(b) where vec(a) = 3 hat (i) + vec(j) + 3 hat (k) and vec(b) = hat (i) - hat (j) - hat (k)

If the vectors vec(a) = 2 hat (i) - lambda hat(j) + 3 hat (k), vec(b) = 3 hat (i) + 2 hat (k) - mu hat (k) and vec(c ) = hat (i) + hat (j) + hat (k) are coplanar , find mu in terms of lambda

Find a unit vector perpendicular to each of the vector vec a+ vec b and vec a- vec b , where vec a=3 hat i+2 hat j+2 hat k and vec b= hat i+2 hat j-\ 2 hat k

If vec(alpha ) = hat (i) - 2 hat (j) + 3 hat (k) , vec(beta) = 2 hat (i) - 3 hat (j) + hat(k) and vec(gamma) = 3 hat (i) + hat (j) - 2 hat (k) , find vec(alpha) . (vec(beta)xx vec (gamma)) .

Find a unit vector perpendicular to each of the vectors ( vec a+ vec b) and ( vec a- vec b) , where vec a= hat i+ hat j+ hat k , vec b= hat i+2 hat j+3 hat k .