Home
Class 12
MATHS
Find the equation of a plane through the...

Find the equation of a plane through the intersection of the planes `vec(r). (hat(i) + 3hat(j) - hat(k)) =5 and vec(r). (2hat(i) - hat(j) + hat(k))` and passing through the point `(2, 1, -2)`

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise WBJEE Archive|13 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016)|1 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Find the equation of a plane through the intersection of the planes vecr.(hati+3hat j-hat k)=5 and vecr.(2hat i-hatj +hatk)=3 and passing through the point (2,1,-2)

The lines vec(r)=hat(i)+t(5hat(i)+2hat(j)+hat(k)) and vec(r)=hat(i)+s(-10hat(i)-4hat(j)-2hat(k)) are -

Find the equation of the line passing through the point (2,-1,3) and parallel to the line vec(r)=(hat(i)-2hat(j)+hat(k))+lamda(2hat(i)+3hat(j)-5hat(k))

The scalar projection of vec(a) = 2 hat (i) - 3hat(j) + hat (k) on vec (b) = 3 hat(i) - 6 hat (j) - 2 hat (k)

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)

Find the vector equation of the line passing through (1,2,3) and parallel to the planes vec r.( hat i- hat j+2 hat k)=5a n d vec r.(3 hat i+ hat j+ hat k)=6.

If the projection of vec(a) = lamda hat(i) + hat(j) + 4hat(k) " on " vec(b) = 2hat(i) + 6hat(j) + 3hat(k) is 4 units, then find lamda

Find the equation the plane which contain the line of intersection of the planes vec rdot( hat i+2 hat j+3 hat k)-4=0a n d vec rdot(2 hat i+ hat j- hat k)+5=0 and which is perpendicular to the plane vec r(5 hat i+3 hat j-6 hat k)+8=0 .

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -