Home
Class 12
MATHS
The vectors vec(a), vec(b), vec(c) are s...

The vectors `vec(a), vec(b), vec(c)` are such that `vec(a) + vec(b) + vec(c) = vec(0)`. If `|vec(a)|= 3, |vec(b)| =4 and |vec(c)| =5`, then show that `vec(a).vec(b) + vec(b).vec(c) + vec(c).vec(a) = -25`

Text Solution

Verified by Experts

The correct Answer is:
`-25`
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise WBJEE Archive|13 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016)|1 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

The vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + vec ( c ) = vec(0) . If |vec(a)| = 3 , |vec(b)|= 4 and |vec(c )|= 5 , show that vec(a).vec(b) +vec(b) .vec(c ) + vec (c ) . vec(a) = - 25

Three vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + vec(c ) = vec(0) , if |vec(a)| = 1 |vec(b)| = 4 and |vec(c )|= 2 , then find the value of mu = (vec(a).vec(b) +vec(b).vec(c ) + vec(c ).vec(a))

(d) answer any one question : (i) if the three vectors vec a, vec b, vec c= 0 are such that vec a+vec b+vec c= vec 0 and |vec a|=3 ,|vec b |=4 , |vec c|=5 , then show that vec a. vec b +vec b . vec c + vec c. vec a = -25

If vec(a) + vec(b) + vec (c ) = vec(0) , show that vec(a) xx vec(b) = vec(b) xx vec(c ) = vec(c ) xx vec(a)

If vec(a) + vec (b)+vec(c ) = vec (0) and |vec(a)| = 3 , |vec(b)| = 5 and |vec(c)| = 7 , , find the angle between the vectors vec(a) and vec(b)

If vec (a) + vec(b) + vec (c ) = vec(0) and |vec(a)| = 6 , |vec (b)| = 4 and |vec(c )| = 3 find the cosine of the angle between the vectors vec(b) and vec(c )

Prove that : vec(a) . { vec(b) xx (vec(c) + vec(d))} = vec(a) . (vec(b)xx vec(c)) + vec(a) . ( vec(b) xx vec(d))

For the vector vec(a) and vec (b) if |vec(a) + vec(b)| = |vec(a) - vec(b)| , show that vec(a) and vec (b) are perpendicular

Prove that , vec(a) xx ( vec (b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c)xx(vec (a) + vec(b)) = vec(0)