Home
Class 12
MATHS
Find the vector equation of a straight l...

Find the vector equation of a straight line passing through the point `(2, -1, 3)` and is perpendicular to each of the straight lines `vec(r) = (hat(i) + hat(j) + hat(k)) + lamda (2hat(i) - 2hat(j) + hat(k)) and vec(r) = (2hat(i) - hat(j) - 3hat(k)) + mu (hat(i) + 2hat(j) + 2hat(k))`

Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise WBJEE Archive|13 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2016)|1 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

A line passes through (2,-1,3) and perpendicular to the lines vec(r)=(hat(i)+hat(j)+hat(k))+lamda(2hat(i)-2hat(j)+hat(k)) and vec(r)=(2hat(i)-hat(j)-3hat(k))+mu(hat(i)+2hat(j)+2hat(k)) . Obtain its vector equation.

The lines vec(r)=hat(i)+hat(j)-hat(k)+lamda(3hat(i)-hat(j)) and vec(r)=(4hat(i)-hat(k))+mu(2hat(i)+3hat(k)) -

Find the distance between the lines l_(1) and l_(2) given by vec(r)=(hat(i)+2hat(j)-4hat(k))+lamda(2hat(i)+3hat(j)+6hat(k)) and vec(r)=(3hat(i)+3hat(j)-5hat(k))+mu(2hat(i)+3hat(j)+6hat(k))

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)

Find the equation of the line passing through the point (2,-1,3) and parallel to the line vec(r)=(hat(i)-2hat(j)+hat(k))+lamda(2hat(i)+3hat(j)-5hat(k))

Find the angle between the lines vec(r)=(3hat(i)+hat(j)-4hat(k))+t(hat(i)+hat(j)+hat(k)) and vec(r)=(5hat(i)-hat(j))+t'(3hat(i)+2hat(j)+4hat(k))

Find the value of lamda if three vectors vec(a) = 2hat(i) - hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c) = 3hat(i) + lamda hat(j) + 5hat(k) are coplanar

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

If vec (alpha ) = - hat (i) + 2 hat (j) + hat (k) , vec(b) = 3 hat(i) + hat (j) + 2 hat (k) and vec(c ) = 2 hat (i) + hat (j) + 3 hat (k) , find [ vec(c ) vec(a) vec(b)]

Show that the vectors are mutually perpendicular hat (i) + 2 hat (j) + hat (k) ,hat (i) + hat (j) - 3 hat (k) and 7 hat (i) - 4 hat (j) + hat (k)