Home
Class 12
MATHS
If the vector vec(AB) = 3hat(i) + 4hat(k...

If the vector `vec(AB) = 3hat(i) + 4hat(k) and vec(AC) = 5hat(i) - 2hat(j) + 4hat(k)` are the sides of a triangle ABC, then the length of the median through A is-

A

`sqrt18`

B

`sqrt72`

C

`sqrt33`

D

`sqrt45`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors vec(AB)=-3hat(i)+4hat(k) " and " vec(AC)=5hat(i)-2hat(j)+4hat(k) are the sides of a DeltaABC , then the length of the median through A is ksqrt(2) units, then k is equal to -

If vectors vec (a) = p hat (i) + 8 hat (j) + 6 hat (k) and vec (b) = - 3 hat (i) + 4 hat (j) + q hat (k) are parallel , find p and q

If the projection of vec(a) = lamda hat(i) + hat(j) + 4hat(k) " on " vec(b) = 2hat(i) + 6hat(j) + 3hat(k) is 4 units, then find lamda

If vec(OA)=hat(i)-2hat(k) " and " vec(OB)=3hat(i)-2hat(j) then the direction cosines of the vector vec(AB) are -

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vectors vec(alpha)=2hat(i)+3hat(j)-6hat(k) " and " vec(beta)=phat(i)-hat(j)+2hat(k) are parallel, then the value of p is -

If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

Show that the vectors 2hat(i)-hat(j)+hat(k), hat(i)-3hat(k)-5hat(k) " and " -2hat(i)+3hat(j)-4hat(k) are the sides of a right-angled triangle.

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find sine of the angle vec(a) and vec (c )

Find the value of lamda if three vectors vec(a) = 2hat(i) - hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c) = 3hat(i) + lamda hat(j) + 5hat(k) are coplanar