Home
Class 12
MATHS
In a DeltaABC, right angled at the verte...

In a `DeltaABC`, right angled at the vertex A, If the positive vectors of A, B and C are respectively `3hat(i) + hat(j) - hat(k), -hat(i) + 3hat(j) + phat(k) and 5hat(i) + qhat(j) - 4hat(k)`, then the point (p,q) lies on a line-

A

parallel to x-axis

B

parallel to y-axis

C

making an acute angle with the positive direction of x-axis

D

making an obtuse angle with the positive direction of x-axis

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the vectors are mutually perpendicular hat (i) + 2 hat (j) + hat (k) ,hat (i) + hat (j) - 3 hat (k) and 7 hat (i) - 4 hat (j) + hat (k)

The position vectors of the points A, B and C are 2hat(i)+6hat(j)-hat(k), hat(i)+2hat(j)+4hat(k) " and " 3hat(i)+10hat(j)-6hat(k) respectively. Show that the points A, B and C are collinear.

Find the area of triangle whose vertices have position vectors hat (i) + hat (j) + 2 hat (k) , 2 hat (i) + 2 hat (j) + 3 hat (k) and 3 hat (i) - hat (j) - hat (k)

The position vectors of the points A,B, and C are 2hat(i)+4hat(j)-hat(k), 4hat(i)+5hat(j)+hat(k) " and " 3hat(i)+6hat(j)-3hat(k) respectively. Show that the points form a right-angled triangle.

If four points 2hat(i) + hat(j) + hat(k), hat(i) + hat(j) - hat(k), hat(j) - hat(k) and lamda hat(j) + hat(k) are coplanar then lamda =

If the position vectors of the points A, B C are 3hat(i)-4hat(j)-4hat(k), 2hat(i)-hat(j)+hat(k) " and " hat(i)-3hat(j)-5hat(k) respectively. Show that ABC is right-angled triangle.

Show that the vectors 2hat(i)-hat(j)+hat(k), hat(i)-3hat(k)-5hat(k) " and " -2hat(i)+3hat(j)-4hat(k) are the sides of a right-angled triangle.

If the position vectors of the points A, B, C are -2hat(i)+2hat(j)+2hat(k), 2hat(i)+3hat(j)+3hat(k) " and " -hat(i)-2hat(j)+3hat(k) respectively, show that ABC is an isosceles triangle.

If the vectors ahat (i) + a hat (j) + c hat (k) , hat (i) + hat (k) and c hat (i) + c hat (j) + b hat (k) be coplanar, show that c^(2) = ab

Show that the vectors a = 2 hat (i) + 3hat (j) + 6 hat (k) , b = 3 hat (i) - 6 hat (j) + 2 hat (k) and c= 6 hat (i) + 2 hat (j) - 3 hat (k) are mutually perpendicular