Home
Class 12
MATHS
A line l passing through the origin is p...

A line l passing through the origin is perpendicular to the lines
`l_(1) : (3 + t) hat(i) + (-1 + 2t) hat(j) + (4 + 2t) hat(k), -oo lt t lt oo`
`l_(2) : (3 + 2s) hat(i) + (3 + 2s) hat(j) + (2 + s)hat(k), -oo lt s lt oo`
Then the coordinate (s) of the point (s) on `l_(2)` at a distance of `sqrt17` from the point of intersection of l and `l_(1)` is (are)

A

`((7)/(3), (7)/(3), (5)/(3))`

B

`(-1, -1, 0)`

C

`(1,1,1)`

D

`((7)/(9), (7)/(9), (8)/(9))`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

A line l passing through the origin is perpendicular to the lines l_1: (3+t)hati+(-1+2t)hatj+(4+2t)hatk , - oo < t < oo , l_2: (3+s)hati+(3+2s)hatj+(2+s)hatk , - oo < t < oo then the coordinates of the point on l_2 at a distance of sqrt17 from the point of intersection of l&l_1 is/are:

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)

The , perpendicular vector on both of (3hat i +hat j + 2hat k) and (2hat i -2hat j +4hat k) is:

In each of the following cases two vectors are perpendicular to each other, find m m hat (i) - 2 hat (j) + hat(k) and 3 hat (i) - 2 hat (j) - 7 hat (k)

Find the length of the perpendicular drawn from the point (5,4,-1) to the line vec(r)=hat(i)+t(2hat(i)+9hat(j)+5hat(k))

In each of the following show that the given vectors are coplanar: 4 hat (i) + 2 hat (j) + hat (k) , 2 hat (i) - hat (j) + 3 hat (k) , 8 hat (i) + 7 hat (k)

Show that the vectors are mutually perpendicular hat (i) + 2 hat (j) + hat (k) ,hat (i) + hat (j) - 3 hat (k) and 7 hat (i) - 4 hat (j) + hat (k)

Show that the vectors a = 2 hat (i) + 3hat (j) + 6 hat (k) , b = 3 hat (i) - 6 hat (j) + 2 hat (k) and c= 6 hat (i) + 2 hat (j) - 3 hat (k) are mutually perpendicular

Find the equation of the line passing through the point (2,-1,3) and parallel to the line vec(r)=(hat(i)-2hat(j)+hat(k))+lamda(2hat(i)+3hat(j)-5hat(k))

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda