Home
Class 12
MATHS
Consider th set of eight vectors V = {a ...

Consider th set of eight vectors `V = {a hat(i) + b hat(j) + c hat(k): a, b, c in {-1, 1}}`. Three non-coplanar vectors can be chosen from V in 2P ways Then p is

Text Solution

Verified by Experts

The correct Answer is:
`p = 5`
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Consider the set of eight vectors V[ahati+bhatj+chatk:a,b,c in {1-1}] . Three non-coplanar vectors cann be chosen from V in 2^(p) ways, then p is

If the vector ahat i+ a hat j+ c hatk, hat i+hatk and chat i+c hat j+b hat k be coplanar, show that c^2= ab .

For what values of p and q the vectors 2 hat (i) + p hat (j) - 3 hat (k) and q hat (i) - 4 hat (j) + 2 hat (k) are parallel ?

If the vectors ahat (i) + a hat (j) + c hat (k) , hat (i) + hat (k) and c hat (i) + c hat (j) + b hat (k) be coplanar, show that c^(2) = ab

Let vecalpha=a hat i+b hat j+c hat k , vecbeta=b hat i+c hat j+a hat ka n d vecgamma=c hat i+a hat j+b hat k are three coplanar vectors with a!=b ,a n d vec v= hat i+ hat j+ hat kdot Then v is perpendicular to vecalpha b. vecbeta c. vecgamma d. none of these

Find a unit vector perpendicular to both the vector vec(a) = 2 hat(i) + hat(j) - 2 hat(k) and vec(b) = 3 hat (i) - hat (j) + hat (k)

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)

For given vector, vec a = 2 hat i j +2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

If vectors vec (a) = p hat (i) + 8 hat (j) + 6 hat (k) and vec (b) = - 3 hat (i) + 4 hat (j) + q hat (k) are parallel , find p and q

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k