Home
Class 12
MATHS
Let vec(PR) = 3hat(i) + hat(j) - 2hat(k)...

Let `vec(PR) = 3hat(i) + hat(j) - 2hat(k) and vec(SQ) = hat(i) - 3hat(j) - 4hat(k)` determine diagonals of aparallelogram PQRS and `vec(PT) = hat(i) + 2hat(j) + 3hat(k)` be another vector. Then the volume of the parallelopiped determined by the vectors `vec(PT), vec(PQ) and vec(PS)` is

A

5

B

20

C

10

D

30

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vectors vec (a) = p hat (i) + 8 hat (j) + 6 hat (k) and vec (b) = - 3 hat (i) + 4 hat (j) + q hat (k) are parallel , find p and q

Let vec(P)=2hat(i)+hat(j)-2hat(k) and vec(Q)=4hat(i)-3hat(k) . Find the acute angle between vec(P) and vec(Q) .

If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

If vec(a)=hat(i)+2hat(j)-hat(k) " and " vec(b)=3hat(i)+hat(j)-5hat(k) , find a unit vector in a direction parallel to vector (vec(a)-vec(b)) .

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find (vec(a) + vec(b)) xx (vec(b)- vec(c ))

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find sine of the angle vec(a) and vec (c )

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find angle between vec(a) and vec(b)

If vec (alpha ) = - hat (i) + 2 hat (j) + hat (k) , vec(b) = 3 hat(i) + hat (j) + 2 hat (k) and vec(c ) = 2 hat (i) + hat (j) + 3 hat (k) , find [ vec(c ) vec(a) vec(b)]