Home
Class 12
MATHS
Let DeltaPQR be a triangle. Let vec(a) =...

Let `DeltaPQR` be a triangle. Let `vec(a) = vec(QR), vec(b) = vec(RP) and vec(c) = vec(PQ)`. If `|vec(a)| = 12, |vec(b)| = 4 sqrt3 and vec(b).vec(c) = 24`, then which of the following is (are) true?

A

`(|vec(c)|^(2))/(2) - |vec(a)| = 12`

B

`(|vec(c)|^(2))/(2) + |vec(a)| = 30`

C

`|vec(a) xx vec(b) + vec(c) xx vec(a)|= 48 sqrt3`

D

`vec(a).vec(b) = -72`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Find |vec(a)-vec(b)| , if two vectors vec(a) and vec(b) are such that |vec(a)| = 2 , |vec(b)| = 3 and vec (a) . vec (b) = 4

If vec(a) and vec(b) are two vector such that |vec(a)| = 2, |vec(b)| =3 and vec(a).vec(b) =4 , then find the value of |vec(a)- vec(b)|

If vec(a) + vec(b) + vec (c ) = vec(0) , show that vec(a) xx vec(b) = vec(b) xx vec(c ) = vec(c ) xx vec(a)

Prove that , vec(a) xx ( vec (b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c)xx(vec (a) + vec(b)) = vec(0)

If vec (a) + vec(b) + vec (c ) = vec(0) and |vec(a)| = 6 , |vec (b)| = 4 and |vec(c )| = 3 find the cosine of the angle between the vectors vec(b) and vec(c )

If vec(a) + vec (b)+vec(c ) = vec (0) and |vec(a)| = 3 , |vec(b)| = 5 and |vec(c)| = 7 , , find the angle between the vectors vec(a) and vec(b)

Prove that : vec(a) . { vec(b) xx (vec(c) + vec(d))} = vec(a) . (vec(b)xx vec(c)) + vec(a) . ( vec(b) xx vec(d))

Prove that : (vec(a) + vec(b)). { (vec(b)+vec(c))xx (vec(c)+vec(a))}= 2 vec(a) . (vec(b)xxvec(c))

If [vec(a) xx vec(b) " " vec(b) xx vec(c) " " vec(c) xx vec(a)] = lamda [vec(a) vec(b) vec(c)]^(2) " then " lamda is equal to

Given vec(C )= vec(A) xx vec(B) and vec(D) = vec(B) xx vec(A) . What is the angle between vec(C ) and vec(D) ?