Home
Class 12
MATHS
Let hat(u) = u(1) hat(i) + u(2) hat(j) +...

Let `hat(u) = u_(1) hat(i) + u_(2) hat(j) + u_(3) hat(k)` be a unit vector in `R^(3) and hat(w) = (1)/(sqrt6) (hat(i) + hat(j) + 2hat(k))`. Given that there exists a vector `vec(v)` in `R^(3)`, such that `|hat(u) + vec(v)| =1 and hat(w). (hat(u) + vec(v)) =1`
Which of the following statement(s) is/are correct ?

A

There is exactly one choice for such `vec(v)`

B

There are infinitely many choices from such `vec(v)`

C

If `hat(u)` lies in the XY plane, then `|u_(1)| = |u_(2)|`

D

If `hat(u)` lies in the XZ plane then `2|u_(1)| = |u_(3)|`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive|6 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE ADVANCED ARCHIVE 2016|5 Videos
  • BINARY OPERATION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find vec(c ) xx (-vec(a))

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find vec(a) xx vec(b)

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find (vec(a) - 2 vec(b)) xx vec(c)

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find angle between vec(a) and vec(b)

If a vector vec(v) is such that 2 vec(v) + vec(v) xx [ hat(i) + 2 hat(j)] = 2 hat(i) + hat(k)and |vec(v)| = 1/3 sqrt(m) , then m is equal to -

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find (vec(a) + vec(b)) xx (vec(b)- vec(c ))

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find sine of the angle vec(a) and vec (c )

If vec (a) = a_(1) hat (i) + a_(2) hat (j) + a_(3) hat (k) , vec(b) = b_(1) hat (i) + b _(2) hat (j) + b_(3) hat (k) and vec (c ) = c_(1) hat (i) + c_(2) hat (j) + c_(3) hat (k) prove that vec (a ) xx ( vec (b) + vec (c ) ) = vec ( a) xx vec ( b) + vec (a) xx vec(c)

If vec(a) = hat(i) + 2 hat(j) - 3 hat (k) and vec(beta) = 3 hat(i) - hat (j) + 2 hat (k) , find the cosine of the angle between the vectors (2 vec(alpha)+ vec(beta)) and (vec(alpha)+2 vec(beta))

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )