Home
Class 12
MATHS
If vec(OP)=xhat(i)+yhat(j)+zhat(k), stat...

If `vec(OP)=xhat(i)+yhat(j)+zhat(k)`, state which of the following is the vector component of `vec(OP)` along y-axis ?

A

`xhat(i)`

B

`yhat(i)`

C

`hat(i)`

D

`hat(j)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    CHHAYA PUBLICATION|Exercise EXERCISE - VERY SHORT ANSWER TYPE QUESTIONS|17 Videos
  • VECTOR

    CHHAYA PUBLICATION|Exercise EXERCISE - SHORT ANSWER TYPE QUESTIONS|17 Videos
  • VECTOR

    CHHAYA PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|24 Videos
  • TRIGONOMETRIC RATIOS [OR FUNCTIONS] OF POSITIVE ACUTE ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

If vec(r)=xvec(a)+yvec(b)+zvec(c) , state which of the following is the scalar component of vec(r) along vec(a) ?

vec(A) and vec(B) are two vectors given by vec(A) = 2hat(i) + 3hat(j) and vec(B)= hat(i) + hat(j) . The magnitude of the component of vec(A) along vec(B) is

If vec A=4 hat i+6 hat j and vec B=3 hat j+4 hat k , then find the component of vec A along vec B

If vec(OA)=hat(i)-2hat(k) " and " vec(OB)=3hat(i)-2hat(j) then the direction cosines of the vector vec(AB) are -

If vec(a) = hat(i) + 2 hat(j) - 3 hat (k) and vec(beta) = 3 hat(i) - hat (j) + 2 hat (k) , find the cosine of the angle between the vectors (2 vec(alpha)+ vec(beta)) and (vec(alpha)+2 vec(beta))

If vec(a) = hat(i) - hat(j) + 2hat(k) , vec(b) = hat(i) +hat(j) +hat(k) and vec(c ) = 2 hat(i) - hat(j) + hat(k) find the vector vec (r ) satisfying the relations , vec(a) . vec(r ) = 1 , vec(b). vec(r ) = 2 and vec(c ) . vec (r ) = 5

If vec(a)=2hat(i)+hat(j)-3hat(k), vec(b)=5hat(i)+4hat(j)+2hat(k) " and " vec(c)=3hat(i)-3hat(j)-2hat(k) , then find the magnitude of the vector vec(a)+vec(b)+2vec(c) and a unit vector in the direction of this vector.

If vec(a)=hat(i)+hat(j)-4hat(k) " and " vec(b)=4hat(i)-hat(j)-2hat(k) , then find (i) a unit vector in the direction of the vector (2vec(a)-vec(b)) and (ii) vector and scalar components of the vector (2vec(a)-vec(b)) along coordinate axes.

If vec (a) = 3 hat (i) + 2 hat (j) + 9 hat (k) and vec(b) = hat (i) + lambda hat (j) + 3 hat (k) , then find the value of lambda so that the vectors (vec(a) + vec(b)) and (vec(a) - vec(b)) are perpendicular to each other .

If vec(a) = 2 hat (i) - hat (j) + 3 hat (k) and vec(b) = 3 hat (i) + hat (j) - 2 hat (k) , find the angle between the vectors (vec(a) + vec(b)) and (vec(a)-vec(b))