Home
Class 12
MATHS
If vectors vec(alpha)=2hat(i)+3hat(j)-6h...

If vectors `vec(alpha)=2hat(i)+3hat(j)-6hat(k) " and " vec(beta)=phat(i)-hat(j)+2hat(k)` are parallel, then the value of p is -

A

`-1/3`

B

`2/3`

C

`-2/3`

D

`-3/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    CHHAYA PUBLICATION|Exercise EXERCISE - VERY SHORT ANSWER TYPE QUESTIONS|17 Videos
  • VECTOR

    CHHAYA PUBLICATION|Exercise EXERCISE - SHORT ANSWER TYPE QUESTIONS|17 Videos
  • VECTOR

    CHHAYA PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|24 Videos
  • TRIGONOMETRIC RATIOS [OR FUNCTIONS] OF POSITIVE ACUTE ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

Find a unit vector in direction parallel to the sum of the vectors vec(a)=2hat(i)+4hat(j)-5hat(k) " and " vec(b)=hat(i)+2hat(j)+3hat(k) , find also the direction cosines of this vector.

The value of lamda for which the vectors vec(a) = hat(i) + 3hat(j) - hat(k) and hat(b) = 2hat(i) + 6hat(j) + lamda hat(k) are parallel is-

If vectors vec (a) = p hat (i) + 8 hat (j) + 6 hat (k) and vec (b) = - 3 hat (i) + 4 hat (j) + q hat (k) are parallel , find p and q

If the vectors phat(i)-5hat(j)+6hat(k) " and " 2hat(i)-3hat(j)-qhat(k) are collinear, find p and q.

If vec(alpha)=2hat(i)-5hat(j)+4hat(k) " and " vec(beta)=hat(i)-4hat(j)+6hat(k), " find " (2vec(alpha)-vec(beta)) . Also find a unit vector in the direction of the vector (2vec(alpha)-vec(beta)) .

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vec(alpha) = 2 hat (i) + hat (j) - 3 hat (k) and vec(beta) = hat (i) - 2 hat (j) + hat (k) , find a vector of magnitude 5 perpendicular to both vec (alpha ) and vec (beta)

If vec(a)=hat(i)+hat(j)-4hat(k) " and " vec(b)=4hat(i)-hat(j)-2hat(k) , then find (i) a unit vector in the direction of the vector (2vec(a)-vec(b)) and (ii) vector and scalar components of the vector (2vec(a)-vec(b)) along coordinate axes.

Statement - I: vec(a)=3hat(i)+phat(j)+3hat(k) " and " vec(b)=2hat(i)+3hat(j)+qhat(k) are parallel vectors if p=9/2 " and " q=2 Statement - II: If vec(a)=a_(1)hat(i)+a_(2)hat(j)+a_(3)hat(k) " and " vec(b)=b_(1)hat(i)+b_(2)hat(j)+b_(3)hat(k) are parallel, then a_(1)/b_(1)=a_(2)/b_(2)=a_(3)/b_(3) .