Home
Class 12
MATHS
If vec(OA)=hat(i)-2hat(k) " and " vec(OB...

If `vec(OA)=hat(i)-2hat(k) " and " vec(OB)=3hat(i)-2hat(j)` then the direction cosines of the vector `vec(AB)` are -

A

`1/sqrt(3),1/sqrt(3),-1/sqrt(3)`

B

`2,2,2`

C

`-1/sqrt(3),-1/sqrt(3),1/sqrt(3)`

D

`-1/sqrt(3),1/sqrt(3),-1/sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    CHHAYA PUBLICATION|Exercise EXERCISE - VERY SHORT ANSWER TYPE QUESTIONS|17 Videos
  • VECTOR

    CHHAYA PUBLICATION|Exercise EXERCISE - SHORT ANSWER TYPE QUESTIONS|17 Videos
  • VECTOR

    CHHAYA PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|24 Videos
  • TRIGONOMETRIC RATIOS [OR FUNCTIONS] OF POSITIVE ACUTE ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector in direction parallel to the sum of the vectors vec(a)=2hat(i)+4hat(j)-5hat(k) " and " vec(b)=hat(i)+2hat(j)+3hat(k) , find also the direction cosines of this vector.

If vec(a)=2hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)+3hat(j)+6hat(k) " and " vec(c)=-hat(i)+2hat(k) , then find the magnitude and direction of the vector vec(a)-vec(b)+2vec(c) .

If vec(a)=2hat(i)+hat(j)-3hat(k), vec(b)=5hat(i)+4hat(j)+2hat(k) " and " vec(c)=3hat(i)-3hat(j)-2hat(k) , then find the magnitude of the vector vec(a)+vec(b)+2vec(c) and a unit vector in the direction of this vector.

If vec(a)=hat(i)+hat(j)-4hat(k) " and " vec(b)=4hat(i)-hat(j)-2hat(k) , then find (i) a unit vector in the direction of the vector (2vec(a)-vec(b)) and (ii) vector and scalar components of the vector (2vec(a)-vec(b)) along coordinate axes.

The position vectors of the points A and B are 3hat(i)-hat(j)+7hat(k) " and " 4hat(i)-3hat(j)-hat(k) , find the magnitude and direction cosines of vec(AB)

If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=2hat(i)-hat(j)+3hat(k) " and " vec(c)=hat(i)-2hat(j)+hat(k) find a unit vector in a direction parallel to vector (2vec(a)-vec(b)+3vec(c)) .

If vec(a)=hat(i)+2hat(j)-hat(k) " and " vec(b)=3hat(i)+hat(j)-5hat(k) , find a unit vector in a direction parallel to vector (vec(a)-vec(b)) .

Points A and B have position vector vec(a)=-3hat(i)+2hat(j)+7hat(k) and vec(b)=3hat(i)+4hat(j)-5hat(k) respectively. Find : The direction cosines l, m, n of vec(AB)

If vec(a)=2hat(i)+5hat(j)-2hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k) , then find (i) vec(a)+vec(b) " and " 2vec(a)-3vec(b) " " (ii)abs(vec(a)+vec(b)) " and " abs(vec(a)-2vec(b)) (iii) a unit vector in the direction (vec(a)+vec(b)) (iv) vector and scalar components of the vector (2vec(a)-3vec(b)) along the coordinate axes.

If vec(AB)=2hat(i)-4hat(j)+5hat(k) " and " vec(BC)=hat(i)-2hat(j)-3hat(k) in parallelogram ABCD, find a unit vector in direction parallel to the diagonal vec(AC) of the parallelogram.