Home
Class 12
MATHS
A straight line L makes angles alpha, be...

A straight line L makes angles `alpha, beta, gamma` and `delta` with the four diagonals of a cube, prove that,
`sin^(2)alpha+sin^(2) beta+sin^(2) gamma+sin^(2) delta =4/3`

Promotional Banner

Topper's Solved these Questions

  • DIRECTION COSINES AND DIRECTION RATIOS

    CHHAYA PUBLICATION|Exercise Exercise 3 : MCQs|11 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    CHHAYA PUBLICATION|Exercise Exercise 3 : Very Short Type Questions|14 Videos
  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for competitive Exams ( E Assertion-Reason Type )|1 Videos
  • ELLIPSE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (D comprehension Type)|7 Videos

Similar Questions

Explore conceptually related problems

If the line makes angles alpha, beta, gamma, delta with four diagonals of a cube, then the value of cos^(2) alpha+cos^(2) beta+cos^(2) gamma+cos^(2) delta is equal to m/3 . Find m.

If alpha, beta, gamma be the direction angles of a straight line, then prove that sin^(2) alpha+sin^(2) beta+sin^(2) gamma =2

A line makes angles alpha,beta,gammaa n ddelta with the diagonals of a cube. Show that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4//3.

If alpha, beta , gamma are angles of a triangle then the value of (sin^(2) alpha + sin ^(2) beta+sin ^(2) gamma-2 cos alpha cos beta cos gamma) is-

If alpha, beta, gamma are positive acute angles, prove that sin alpha+sin beta+ sin gamma gt sin (alpha+ beta+ gamma)

Given alpha+beta-gamma=pi, prove that sin^2alpha+sin^2beta-sin^2gamma=2sinalphasinbetacosgammadot

if 0ltalpha,beta,gamma lt(pi/2) prove that sin alpha+sin beta+sin gamma gtsin(alpha+beta+gamma)

Prove that (cos2 alpha-cos 2 beta)/(sin2 alpha+sin2 beta)=tan(beta-alpha)

Statement -I : A line makes the same angle theta with each of the x and z-axis. If it makes an angle alpha with the y-axis, such that sin^(2) alpha=3 sin^(2) theta , then cos^(2) theta=3/5 . Statement -II : If a line with direction ratios, l, m, n makes angles alpha, beta, gamma respectively with x, y amd z-axis then cos alpha=(l)/sqrt(l^(2)+m^(2)+n^(2)), cos beta =(m)/sqrt(l^(2)+m^(2)+n^(2)) and cos gamma =(n)/sqrt(l^(2)+m^(2)+n^(2)) .