Home
Class 12
MATHS
Let vec(P)=2hat(i)+hat(j)-2hat(k) and ve...

Let `vec(P)=2hat(i)+hat(j)-2hat(k)` and `vec(Q)=4hat(i)-3hat(k)`. Find the acute angle between `vec(P)` and `vec(Q)`.

Text Solution

Verified by Experts

The correct Answer is:
`theta=cos^(-1) 14/15`
Promotional Banner

Topper's Solved these Questions

  • DIRECTION COSINES AND DIRECTION RATIOS

    CHHAYA PUBLICATION|Exercise Exercise 3 : MCQs|11 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    CHHAYA PUBLICATION|Exercise Exercise 3 : Very Short Type Questions|14 Videos
  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for competitive Exams ( E Assertion-Reason Type )|1 Videos
  • ELLIPSE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (D comprehension Type)|7 Videos

Similar Questions

Explore conceptually related problems

Let vec(a)=4hat(i)+3hat(j)-hat(k), vec(b)=5hat(i)+2hat(j)+2hat(k), vec(c)=2hat(i)-2hat(j)-3hat(k) " and "vec(d)=4hat(i)-4hat(j)+3hat(k), " prove that " vec(b)-vec(a) " and " vec(d)-vec(c) are parallel and find the ratio of their moduli.

If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

If vec(a) = 2 hat (i) - hat (j) + 3 hat (k) and vec(b) = 3 hat (i) + hat (j) - 2 hat (k) , find the angle between the vectors (vec(a) + vec(b)) and (vec(a)-vec(b))

Let vec(a) = hat(i) + hat(j) - 3 hat(k) and vec(b) = 2 hat(i) + hat(j) + hat(k) Statement - I: Vectors vec(a) and vec(b) are perpendicular to each other Statement - II: vec(a) . vec(b) = 0

If vec(a)=2hat(i)+hat(j)-3hat(k), vec(b)=5hat(i)+4hat(j)+2hat(k) " and " vec(c)=3hat(i)-3hat(j)-2hat(k) , then find the magnitude of the vector vec(a)+vec(b)+2vec(c) and a unit vector in the direction of this vector.

If vec(a)=2hat(i)+3hat(j)-4hat(k) " and " vec(b)=hat(i)+2hat(j)+hat(k) , then find (vec(a)+vec(b)) " and " abs(vec(a)+vec(b)).

If vec(a)=2hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)+3hat(j)+6hat(k) " and " vec(c)=-hat(i)+2hat(k) , then find the magnitude and direction of the vector vec(a)-vec(b)+2vec(c) .

If vec(a) = hat(i) + 2 hat(j) - 3 hat (k) and vec(beta) = 3 hat(i) - hat (j) + 2 hat (k) , find the cosine of the angle between the vectors (2 vec(alpha)+ vec(beta)) and (vec(alpha)+2 vec(beta))

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vec a = -hat i+hat j+2 hat k, vec b= 2 hati- hatj- hat k , and vec c = -2hat i+hat j+3 hatk then find the angle between 2 vec a- vec c and veca+ vecb .