Home
Class 12
MATHS
Given P(A)=(3)/(7), P(B)=(4)/(7) and P(A...

Given `P(A)=(3)/(7), P(B)=(4)/(7) and P(A+B)=(7)/(9)` for two events A and B. Find `P(A//B) and P(B//A)`. Are the events A and B independent ?

Text Solution

Verified by Experts

The correct Answer is:
`(7)/(18) and (14)/(27)`, No
Promotional Banner

Similar Questions

Explore conceptually related problems

If P(A)=(3)/(7), P(B)=(4)/(7) and P(A cap B)=(2)/(9) , then the value of P(A//B) is -

For two events A and B P(A^c//BC) + P(A//B^c) = ?

If P(A)=(6)/(11), P(B)=(5)/(11) and P(A cup B)=(7)/(11) ,find P(A cap B)

For two events A and B P(A^C|B^C)+P(A|B^C)= ?

If P(A)=(6)/(11), P(B)=(5)/(11) and P(A cup B)=(7)/(11) , find P(A/B)

If P(A)=(6)/(11), P(B)=(5)/(11) and P(A cup B)=(7)/(11) , find P(B|A)

If P(A)=(7)/(13), P(B)=(9)/(13) and P(A cap B)=(4)/(13) , evaluate P(A|B).

If P(A)=(1)/(4),P(B)=(1)/(3) and P(A-B)=(1)/(6) , examine whether events A and B are independent.

If event A implies B. then P(A) le P(B)

For any two events A and B prove that, P(A//B) lt P(B//A) " if " P(A) lt P(B)