Home
Class 12
MATHS
The smallest positive angle theta(in deg...

The smallest positive angle `theta`(in degrees)satisfying the equation `cos theta.cos(60^@-theta).cos(60^@+theta)=1/8` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive angle theta satisfying the equation sin^(2) theta - 2 cos theta + (1//4) = 0 is

Prove that cos thetacos(60^(@)- theta)cos(60^(@)+theta) = 1/4 cos 3 theta

Prove that 4 cos theta cos (60^(@) + theta) cos (60^(@) - theta) = cos 3theta .

Smallest positive value of theta satisfying 8sinthetacos2thetasin3thetacos4theta=cos6theta is

Smallest positive value of theta satisfying 8sin theta cos2 theta sin3 theta cos4 theta=cos6 theta is

Prove that: |cos theta cos(60^(@)-theta)cos(60^(@)+theta)<=(1)/(4) for all values of theta

cos^(2)theta+cos^(2)(60^(@)+theta)+cos^(2)(60^(@)-theta)=3/2

cos^(2)theta+cos^(2)(60^(@)+theta)+cos^(2)(60^(@)-theta)=3/2

sqrt((cot theta+cos theta)/(cot theta-cos theta)) is equal to: