Home
Class 12
MATHS
lim(x->oo) (log x^n - [x])/[x], n in N...

`lim_(x->oo) (log x^n - [x])/[x], n in N`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(log x^(n)-[x])/([x]),n in N,quad

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

Lt_(x rarr oo)(log x^(n)-[x])/([x])=

lim_ (x rarr oo) (log x) / (x ^ (n)) =

lim_(x -> oo) x^n / e^x = 0 , (n is an integer) for

Discuss the continuity of the function f(x) = lim_(n rarr oo) (log (2 + x)-x^(2n) sin x)/(1+x^(2n))"at x" = 1

Discuss the continuity of the function f(x) = lim_(n rarr oo) (log (2 + x)-x^(2n) sin x)/(1+x^(2n))"at x" = 1

consider f(x)=lim_(x-oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n)) for x>0,x!=1,f(1)=0 then