Home
Class 12
MATHS
Let AB and C be the angles of Delta ABC,...

Let AB and C be the angles of `Delta ABC`, then the minimum value of `sin^2(A/2)+sin^2(B/2)+sin^2(C/2)` is (1) 1 (2) `3/4` (3) `1/2` (4) `1/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a right angled triangle ABC, write the value of sin^2 A + sin^2 B+ sin^2C

ABC is a right angled triangle, then the value of sin^(2)A + sin^(2)B + sin^(2)C will be-

In a right angled triangle ABC,write the value of sin^(2)A+sin^(2)B+sin^(2)C

In Delta ABC,a=3,b=4 and c=5, then value of sin A+sin2B+sin3C is

If for a triangle ABC, |(1,a,b),(1,c,a),(1,b,c)|=0 then the value of sin^(2)A+sin^(2)B+sin^(2)C is -

(i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}| . (ii) Let A,B and C be the angles of triangle such that Agt=Bgt=C. Find the minimum value of Delta where Delta=|{:(sin^(2)A,sinAcosA,cos^(2)A),(sin^(2) B,sinBcosB,cos^(2)B),(sin^(2)C,sinCcosC,cos^(2)C):}| .

If A,B,C are the angles of a triangle, show that that greatest value of sin 2A+ sin 2B+ sin 2C "is" (3 sqrt(3))/(2)

In triangle ABC, if a^(2) + b^(2) +c^(2) -bc -ca -ab=0, then the value of sin ^(2)A+ sin ^(2)B+sin ^(2)C is -