Home
Class 12
MATHS
If f(1) = 1,f'(1) =2 then lim(x->1)sqrt(...

If `f(1) = 1,f'(1) =2` then `lim_(x->1)sqrt(f(x)-1)/(sqrt(x)-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -

If f(1)=1,f'(1)=2 , then lim_(xto1)(sqrt(f(x))-1)/(sqrt(x)-1) is a)2 b)4 c)1 d) 1/2

If f(4)=4,f'(4)=1, then lim_(x in4) (2-sqrt(f(x)))/(2-sqrt(x)) is equal to

If f(1) =1 and f^(')(1) =2 then lim_(x rarr 1) (sqrt(f(x))-1)/(sqrt(x) -1) =

If f (1) =1 f'(1)=2 then the value of lim _(xto1) (sqrt(f(x))-1)/(sqrtx-1) is-

If f(1)=1 and f'(1)=2 then lim_(xto1)((f(x))^(2)-1)/(x^(2)-1) is

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))