Home
Class 12
MATHS
Let a=7^(1/(log8 sqrt(343))) and b=11^(1...

Let `a=7^(1/(log_8 sqrt(343))) and b=11^(1/(log_5 sqrt11)),` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(log_(5)11)=25 and b^(log_(11)25)=sqrt(11), then last digit of N=a^((log_(5)11)^(2))+b^((log_(11)25)) is equal to

if a,b,c are positive real numbers such that a^(log_(3)(7));b^(log_(7)(11))=49 and c^(log_(11)(25))=sqrt(11) find the vale of a^((log_(3)(7))^(2)+b^((log_(7)(11))^(2))+c)(log_(11)(25))^(2)

If a , b are co-prime numbers and satisfying (2+sqrt(3))^(1/(log_a(2-sqrt(3)))+1/(log_b ((sqrt(3)-1)/(sqrt(3)+1))))=1/(12) then (a+b) can be is equal to : 13 (b) 5 (c) 7 (d) 8

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

Let x=(log_(1/3)5)(log_125 343)(log_49 729) and y= 25^(3log_289 11 log_28 sqrt17 log_1331 784) if vecV=x hat i+y hat j then |vecV|^2 is equal to

Let a=sqrt(57+40sqrt2)-sqrt(57-40sqrt2) and b=sqrt(25^(1/(log_8(5)))+49^(1/(log_6(7)) and c is the value of x^3-3x-14 where x=(7+5sqrt2)^(1/3)-1/(7+5sqrt2)^(1/3). Find the value of (a+b+c)

Solve log_(5)sqrt(7x-4)-1/2=log_5sqrt(x+2)

if a,b,c are positive real numbers such that a^(log_(3)7)=27;b^(log711)=49 and c^(log_(11)25)=sqrt(11) then the value of {a^(log_(3)7)sim2+b^(log_(7)11)^^2+c^(log_(11)25)^^2} is

The value of (log_5 9*log_7 5*log_3 7)/(log_3 sqrt(6))+1/(log_4 sqrt(6)) is co-prime with