Home
Class 12
MATHS
The range of y=(sec^2x-|secx|+4)/(sec^2x...

The range of `y=(sec^2x-|secx|+4)/(sec^2x+|secx|+4) is (1)[3/5, 1)(3)[2/3, 1)(4)[1/3, 1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=sin^(2)x+cos^(4)x is (1)[(1)/(2),1](2)[(3)/(4),1](3)[0,1](4)[0,(1)/(4)]

The range of f(x)=sin^(2)x+cos^(4)x is (1)[(1)/(2),1](2)[(3)/(4),1](3)[0,1](4)[0,(1)/(4)]

The complete range of y=(4x^(2)-3x+1)/(4x^(2)+5x+1) is (x in R)

If y = sqrt((secx-1)/(sec x +1) ) then (dy)/(dx) =

If f(x) =((sec x - 1)/( sec x + 1))^(1/2) , find f'((4pi)/( 3))

int_0^(pi/3) (secx tanx)/(1+sec^2x)dx

The derivative of sec^(-1)(1/(2x^2+1)) with respect to sqrt(1+3x) at x=-1//3

Find the range of following functions : y = sec^(-1)(x^2 + 3x + 1)

The indefinite integral I=int(sec^(2)xtanx(secx+tanx)dx)/((sec^(5)x+sec^(2)xtan^(3)x-sec^(3)x tan^(2)x-tan^(5)x)) simplifies to (1)/(3)ln |f(x)|+c , where f((pi)/(4))=2sqrt2+1 and c is the constant of integration. If the value of f((pi)/(3)) is a+sqrtb , then the value of b-3a is equal to

If int tan^3 x sec^3 x dx=(1/m) sec^m x - (1/n) sec^n x dx , then (m,n)= ......... A) (5,3) B) (3,5) C) (1/5, 1/3) D) (4,4)