Home
Class 12
MATHS
If x=a t^2,y=2a t , then (d^2y)/(dx^2) ...

If `x=a t^2,y=2a t ,` then `(d^2y)/(dx^2)` is equal to (a)`-1/(t^2)` (b) `1/(2a t^2)` (c) `-1/(t^3)` (d) `1/(2a t^3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=at^(2),y=2at, then (d^(2)y)/(dx^(2)) is equal to ( a )-(1)/(t^(2))( b) (1)/(2at^(2))(c)-(1)/(t^(3)) (d) (1)/(2at^(3))

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)