Home
Class 12
MATHS
The minimum value of 3x^2+2x y+y^2=2x=6y...

The minimum value of `3x^2+2x y+y^2=2x=6y+13` where `x,y in R,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If m is the minimum value of f(x,y)=x^(2)-4x+y^(2)+6y when x and y are subjected to the restrictions 0<=x<=1 and 0<=y<=1, then the value of |m| is

If x ^(2) + y^(2) - 14 x - 6y - 6=0, then the maximum possible value of 3x + 4y is (where (x,y) is a point on the given curve)

Find the value of x , y 2x+3y=6 3x-2y=4 .

The minimum value of the expression 3x + 2y (AA x, y >0) , where xy^(2) = 10 , occurs when the value of y is equal to

Let f(x,y)=x^(2)+2xy+3y^(2)-6x-2y, where x, y in R, then

Let f(x,y)=x^(2)+2xy+3y^(2)-6x-2y, where x, y in R, then

Write the minimum value of y_2 where y=sin^2x cos^2x

The minimum value of 3x+4y for x>0,y>0 such that x^(2)y^(3)=6 is

Find the values of x and y , if (3y -2) + (5 -4x)i=0 , where , x y in R.