Home
Class 12
MATHS
Let O be the origin and let PQR be an ar...

Let `O` be the origin and let PQR be an arbitrary triangle. The point S is such that ` vec O Pdot vec O Q+ vec O Rdot vec O S= vec O Rdot vec O P+ vec O Qdot vec O S= vec O Q` .` vec O R+ vec O Pdot vec O S` Then the triangle PQ has S as its: circumcentre (b) orthocentre (c) incentre (d) centroid

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a + vec b + vec c = o, prove that vec a xxvec b = vec b xxvec c = vec c xxvec a

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a , vec O B= vec b , then what is vec O C ?

Let O be the origin and P, Q, R be the points such that vec(PO) + vec(OQ) = vec(QO) + vec(OR) . Then which one of the following is correct?

Let O be the origin nad P, Q, R be the points such that vec(PO)+vec(OQ)=vec(QO)+vec(OR) . Then which one of the following is correct?

vec a, vec b, vec c are three non-zero vectors. If o + be defined as vec x o + vec y = vec x + vec y + vec x xxvec y and

Let O be an interior point of Delta ABC such that 2vec OA+5vec OB+10vec OC=vec 0

If vec p + vec q + vec r = xvec s and vec q + vec r + vec s = yvec p and are vec p, vec q, vec r non coplaner vectors then | vec p + vec q + vec r + vec r + vec s | =

If O\ a n d\ O^(prime) are circumcentre and orthocentre of \ A B C ,\ t h e n\ vec O A+ vec O B+ vec O C equals a. 2 vec O O ' b. vec O O ' c. vec O ' O d. 2 vec O ' O

Let O be the centre of a regular hexagon ABCDEF. Find the sum of the vectors vec OA,vec OB,vec OC,vec OD,vec OE and vec OF .

Let ABCD be a plarallelogram whose diagonals intersect at P and let O be the origin.Then prove that vec OA+vec OB+vec OC+vec OD=4vec OP