Home
Class 12
MATHS
If the root of the equation log2 \ (x) -...

If the root of the equation `log_2 \ (x) - log_2 (sqrt(x) - 1)=2` is `alpha`, then the value of `alpha^(log_4 3)` is (a) 1 (b)2 (c) 3 (d)4

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation log_4 (2x^2 + x + 1) - log_2 (2x - 1) = 1.

If x=alpha satisfies the equation log_(6)(2^(x+3))-log_(6)(3^(x)-2)=x, then find the value of 3^(alpha)

If sum of the roots of the equation x +1=2log_2(2^x +3)-2log_4(1980-2^-x )is log_ab , then find the value of b - a

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of alpha beta is

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of alpha beta is

If the solution of the equation log_(x)(125x)*log_(25)^(2)x=1are alpha and beta(alpha

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of log_(alpha)beta+log_(beta)alpha is

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of log_(alpha)beta+log_(beta)alpha is

If alpha and beta are the roots of the equation (log_(2)x)^(2)+4(log_(2)x)-1=0 then the value of log_(beta)alpha+log_(alpha)beta equal to

The equation x^((3)/4 (log_2x)^2+log_2 x -(5)/(4))=sqrt(2) has :