Home
Class 12
MATHS
Let w is non-real root of x^3 =1 (i) If ...

Let w is non-real root of `x^3 =1` (i) If `P = w^n`, (n in N) and `Q = (.^(2n)C_0 + .^(2n)C_3 +.....)+( .^(2n)C_1 + .^(2n) C_4+.....)w + (.^(2n)C_2 + .^(2n)C_2+.^(2n)C_5+....)w^2` then find `P/Q`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

Evaluate .^(n)C_(0).^(n)C_(2)+.^(n)C_(1).^(n)C_(3)+.^(n)C_(2).^(n)C_(4)+"...."+.^(n)C_(n-2).^(n)C_(n) .

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

If ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P., find n.

Find n, if ""^(2n)C_(1),""^(2n)C_(2) and ""^(2n)C_(3) are in A.P.

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

""^((2n + 1))C_0 + ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 + ……+""^((2n + 1))C_n =

""^((2n + 1))C_0 + ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 + ……+""^((2n + 1))C_n =