Home
Class 12
MATHS
Let alpha,beta and gamma are the angles ...

Let `alpha,beta and gamma` are the angles of a right angle triangle, then the value of `sin alpha*sinbeta*sin(alpha-beta)+sinbeta*sin gamma*sin(beta-gamma)+sin gamma*sin alpha*sin(gamma-alpha)+sin(alpha-beta)*sin(beta-gamma)*sin(gamma-alpha)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

cos alpha sin (beta-gamma)+cos betasin (gamma-alpha+cos gamma sin (alpha-beta)=

sin(beta+gamma-alpha)+sin(gamma+alpha-beta)+sin(alpha+beta-gamma)-sin(alpha+beta+gamma)=

If alpha, beta , gamma are angles of a triangle then the value of (sin^(2) alpha + sin ^(2) beta+sin ^(2) gamma-2 cos alpha cos beta cos gamma) is-

cos alpha sin (beta-gamma)+cos beta sin (gamma-alpha) +cos gamma(sin alpha-beta)=

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))*sin((beta+gamma)/(2))*sin((gamma+alpha)/(2))

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))sin((beta+gamma)/(2))sin((gamma+alpha)/(2))

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot